Bulgarian Academy of Sciences. Space Research Institute.
Aerospace Research in Bulgaria. 18, 2003. Sofia

CLASS OF DYNAMICAL SYSTEMS WITH
NONLINEAR EXCITATION ¥

V.Damgov, P.Trenchey
Space Research Institute — Bulgaran Academy of Sciences

Abstract

The phenomenon of “quantized™ oscillation excitation is presented and discussed,
A class of kick-excited self-adaptive dynamical systems is formed and proposed. The class
is characterized by non-linear (inhomogeneous) external periodic excitation (as regards
the coordinates of excited systems) and is remarkable Jor its objective regularities:
“discrete” oscillation excitation in macro-dynamical systems having multiple branchy
attractors and strong self-adaptive stability.

1. Introduction

Our main objective here is to present a phenomenon of highly
general nature manifested in various dynamical systems. What is meant here
is the display of peculiar “quantization” by the paramcter of intensity of the
excited oscillations, i.e. given unchanging conditions, it is possible to excite
oscillations with a strictly defined discrete set of amplitudes; the rest of the
amplitudes being “forbidden”. The realization of oscillations with specific
amplitude from the “permitted” discrete set of amplitudes is determined by
the initial conditions. The occurrence of this unusual property is
predetermined by the new general initial conditions, i.e. the non-linear
action of the external excited force with respect to the coordinates of the
system subject to excitation.

It is well known that the Theory of Non-Lincar Oscillations
considers mostly the action of external periodic forces on oscillating
systems. Those forces are cither independent of the coordinates of the
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system or linear with respect to the coordinates (the latter are in esscince the
classical parametric systems) (cf, for example [1]). The phenomenon under
review is characterized by other initial conditions, i.e. non-linearity of the
external action force as regards the coordinate of the system that is being
excited. The result is the occurrence of qualitatively new properties ({2, 3,
41).

A class of phenomena and systems with specific excitation can be
formed and proposed. It can be most gencrally termed a class of kick-
excited sclf-adaptive systems. Kick excitation is represented by a short
impact of the external periodic force compared to the basic oscillations
period. The self-adaptivity consists in the self-tuning of the system to the
cxternal kick excitation, which conditions the super-stability of the
osciliations,

We consider a class of systems with specific energy feeding. It is
constructed on the basis of non-linear cscillator under external force of
special kind:

2
d”x + 28@+ F{x)=¢e(x)I{vt)
(1) di? dt .

The external force is presented here as a product of two terms - onc
is periodic function of time t and the cther is a non-linear function of the
variable x. The function f{x) can be non-linear or, even, linear function;

& =const The form and the role of the function £(x) , which in fact can be
regarded as coordinate-dependent amplitude of the driving force, is
essential. In general, it can be constructed in an arbitrary complicated form.

In considering the case of non-linear oscillator under wave action
[3], the governing equation can be presented in the following form:

2

4 2x + 26-£—iﬁ+ f{x)=F sin(vt — kx)
(2) dt dt
F,v=const g un4 y is the wave number.
This case is remarkable for the fact that the non-linearity of the
external action (that is the external wave excitation) is present in a natural
way, without arranging any artificial conditions for accomplishment of
inhomogeneous excitation. In practice, such systems exist in the outer space
and other medium and, generally, thosc are charged particles moving in a
magnetic field under the action of electrostatic waves. The “oscillator-
wave” system features the same set of distinctive characteristics, such as the
possibility of excitation of stable osciliations with a strong determined set of
possible amplitudes, strong self-adaptive stability of stationary modes, etc.

¥

where
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2. Theoretical analysis of the kicked pendulum,
In this section, we present an approximate but simple derivation of a
two-dimensional map corresponding to the Poincaré map of kicked

pendulum
{I, ‘x} <d'
&{x)=

@y E+206+sinx=e(x)Fsin(v)., 0, |xf>da’

The fact that Poincaré’s map is defined in energy-phase variables
suggests that we should examine the energy balance of the system, The
external force acts in such a way that the system receives energy only onge
in a half-period in the form of a very short pulse; therefore, an expression
for the incoming energy can be easily obtained. In order to simplify our
calculations, we have to make two main assumptions concerning the system

parameters. We assume weak positive dissipation (0‘(’8 <<1) and thin

. . . oo " <<T :
active zone, i.e. the phase trajectory crosses it for a time £ zone , where T

is the oscillation half-period. The two map variables will correspond to the
total energy and the phase of the external force in the active zone’s center {x
={).

The energy received for one pass through the active zone is:

d
AE,;, = [Fsin(vr(x))dx
@ -

Introducing phase variable ¥ =V and assuming V to be the average
velocity in the active zone, one can obtain

()
¥ our ¥ o ” .

AE,, = J.Esm wdy = Lild Jsin wdy = 2—Qsin w,siné = 2Fd'31—n§-5in ¥,
¥ 5 v ¥, v é

Here, we have introduced median phase Vo= Win +¥ou )12 and phase
half-width of the active zone g‘f-——(wam W)/ 2=vd fV. Expression (5)

can be further sirplified by assuming small phase half-width Sin¢ = 9:; in
this case, we get:
(6) Alﬁm =2Fd'sin l;ffo.
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Now we have to determine the energy loss of (3) for thc time interval
between two passes through the active zone, it will be approximately equal
to the energy loss in the case of free damped pendulum, which is given by

D AE,, =16 [E(m) - (1 - m)K(m)] '
m=E, 12 gng Eo=X2H{-c0sx) o e funl energy of the
system, K(m) ang E(m) arc complete elliptic integrals of first and second
kind, accordingly. In case of small amplitudes, (7) can be simplified using

the expansions:

K(m):%[l+§+6%m2 +]

E(m):f[l—f~im2 +]
® AR

and keeping only terms of order up to m, one obtains:
©) AE,,, =48K(m)E, = BT (m)E,
Here, | (™)

of 1ts energy.
Let us now define the map variables precisely. The energy variable

ism=EoJ"‘2

Here,

is the period of pendulum oscillations expressed as a function

, and the phase one is the median phase defined in (5): b= Vo,

In addition, we assume that "*» does not stand for the moment of the nth
pass through the center of the active zone, but for the moment of the

th
(n—~1) leaving the zone; thesc moments are shown in Fig.1. We used such
a complicated notation because it simplifies the equation for the phase
variable’s evolution. It becomes simply:

8

ntl

-0, +£+ﬂ?=9n +2vK(m,, ) +7  (mod 27)
(10) 2

The additional term ¥ 7 is introduced because of the symmetry of (3): it is
invariant under transformation oHL¥)>(x—ay+ ”), and the
subsequent passes through the active zone occur for velocities with opposite
signs {(cf. Fig.1). The balance of m is written as:

E; E E
My =m, +A—5 A" =3 4 Fd'sing, —A—2%
(11) 2 2 2
Here, we can use either the exact expression for energy dissipation (7) or the
small amplitudes’ approximation (9). In the first case, combining the
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equations for encrgy and phase variables, we obtain the two-dimensional
map:

My =m, —8B[E(m, )~ (1-m, MK (m, )1+ Fd'sin 0,
(12) oy =0, +2vK{m ., )+7 (mod 27)

In the case of small amplitudes approximation, expressing ) only with

terms of order up to m and assuming m and B are both small, the following
approximate map is obtained:
Moy =m, (1=-278)+ Fd'sing,

8;1+1 = 0” +(v+ 17+ % Mo {mod 27)

(13)
Let ug find the fixed points {mo"g ) of the map (12). The equation

for m yields:

(14) Fd'sin@° =8B{E(m®)— (1 -m°)YK(m°)]

and from equation for & it follows that:

(15) 2vK(m®y=(2{ - )7

The last result shows that for a fixed value of the frequency v the system

4]
0 o i : 3
processes discrete set of stationary states " for various values ol |; the

condition K(m)27/2 requires (2= D2V Moregver, Eq.(15) completely
determines the cnergy’s stationary values, hence the amplitude of
oscillation. Taking into account only the first two terms in the cxpansion of

K(m) according to (8), one can find approximately:

. m;) = 4|i_2._€_:_1 — l:{
(16) . !

That is the reason for which we call {15) a discretization condition
for the system.
Writing the energy balance equation and combining it with the phase
equation we arrive at a map identical with the dissipative twist map:
E.,n=0-8E, +d1{8,)

Oy =8, +2m0(E, ;) (mod 27)

(17
with the following notations introduced:
E
£=yFd", a(E)}= vz(—l+ &
(18) 4z 2
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So, it becomes clear that dissipative twist map (17) models well the general
kick-system (1) with symmetric potential, small dissipation and thin active
zone.

This is a very important result. It places the class of kick-excited
systems in correspondence to the well-studied class of dissipative twist
maps. It also highlights the fact that kick-systems inherit their common
features from twist maps. So, we can assert that it is convenient to consider
system (17} as a general kick-model, which stands for a variety of physical
systems and especially for those forced in a pulse way, i.e. the external force
acts only through short time pulses.

3. Conclusion

The basis properties characterizing the mechanism of “quantized”
osciflation excitation are:

(1) Excitation of oscillations of the quasi-cigenfrequency of the
system with a set of discrete stationary amplitudes, depending only on the
initial conditions, i.e. a specific “quantization” of the excited oscillation by
the parameter of intensity.

(2) The possibility for effective division of the frequency with high-
rate frequency of the unary transformation.

(3) Adaptive self-control of the energy contribution in the oscillating
process, revcaled as maintenance of the amplitude values and the
oscillations frequency in the system in case of significant change of the
amplitude of external action, the quality factor {Q-factor, load, losses) and
other actions, i.e. this is a phenomenon of strong adaptive stabilization of
regimes when the parameter changes up to hundreds percent.
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Fig. 1 The phase points standing for consecutive
terations of the map variables along the trajectory
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EAWH KJIAC AUHAMUYHHA CHCTEMM C
HEJIMHEWHO Bb3BYKJTAHE +)

B. [lameos, I1. Tpenuea

Pesrome

B cratusta e onucaHc ¥ ¥3C/IEABAHO € ABICHHUETO “KBAUTOBANA
ocuunanua.  IIpeyuoken e ¢w3fafeH  Knac 0T KUK-BL3Oyaumut
CaMOaaNTUBHU JHHAMHYHM CUCTEMH, KOHTC C& XapaKTepusupa <
HeIMICHHO (HeXOMOTCHHO) BBHINHO [IEPHOJMYHO BB3OYxaane (fo
OTHOUIEHME Ha KOOP/IMHATHTE 114 BbL3OYIMMHTE CHCTCMM) M CC OTJIMYaBa ¢
OBEKTUBHUTE CH 3aKOHOMEPHOCTH: BB30Yx/1aHe Ha *‘muKperna” OCIlnaIys
B MaKpPOJNUHAMMYHH CUCTEMHM ¢ MIOKECTBC KJIOHOBH ATDAKTOPH M CHITHE
CaMOoananTUBHa ¥CTOMHUBOCT.
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