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Abstract
The phenomenon of "quantized" oscillation excitation is presented. and discussed.

A class of kick-excited self-adaptive dynamical systems is formed. and. proposed. The class
is characterized by non-linear (inhomogeneous) external periodic excitation (as regards
the coordinates of excited systems) and is remarkable for its objective regularities:
"discrete" oscillation excitation in macro-clynamical systems having multiple branchy
attracto rs and strong s elf- adaptiv e stab itity.

1. Introduction
our main objective here is to present a phenomenon of highly

general nature manifested in various dynamical systems. What is meant here
is the display of peculiar "quantization" by the parameter of intensity of the
excited oscillations, i.e. given unchanging conditions, it is possible to excite
oscillations with a strictly defined discrete set of amplitudes; the rest of the
amplitudes being "forbidden". The realization of oscillations with specific
amplitude from the "permitted" discrete set of amplitudes is determined by
the initial conditions. The occurrence of this unusual property is
predetermined by the new general initial conditions, i.e. the non-linear
action of the external excited force with respect to the coordinates of the
system subject to excitation.

It is well known that the Theory of Non-Linear oscillations
considers mostly the action of external periodic forces on oscillating
systems. Those forces are either independent of the coordinates of the

" Research supported by the "scientific Research" National Council at the Bulsarian
Ministry of Education and Science under Contract No.H3-1106/01

r12



system or linear with respect to the coordinates (the latter are in essence the
classical parametric systems) (cf, for example tll). The phenomenon under
review is characterized by other initial conditions, i.e. non-linearity of the
external action force as regards the coordinate of the system that is being
excited. The result is the occuffence of qualitatively new properties (2,3,
4l).

A class of phenomena and systems with specific excitation can be
formed and proposed. It can be most generally termed a class of kick-
excited self-adaptive systems. Kick excitation is represented by a short
impact of the external periodic force compared to the basic oscillations
pedod. The self-adaptivity consists in the self-tuning of the system to the
external kick excitation, which conditions the super-stability of the
oscillations.

We consider a class of systems with specific energy feeding. It is
constructed on the basis of non-linear oscillator under external force of
special kind:

d2x )-
-----;-(1) dt" 

t'uff + f G) = t(x)rl(vt)

The external force is presented here as a product of two terms - one
is periodic function of time t and the other is a non-linear function of the
variable x. The function f(x) can be non-linear or, even, linear function;
6 = const. The form and the role of the functio n E(x), which in fact can be
regarded as coordinate-dependent amplitude of the driving force, is
essential. In general, it can be constructed in an arbitrary complicated form.

In considering the case of non-linear oscillator under wave action
[3], the governing equation can be presented in the following form:

d2 x ,1 .
. , -r 2S++ .f (x) = F sin(v/ - kx)

(2) dt' dt 
,

where F 'v = const pand k is the wave number.
This case is remarkable for the fact that the non-linearity of the

external action (that is the external wave excitation) is present in a natural
way, without arranging any artificial conditions for accomplishment of
inhomogeneous excitation. In practice, such systems exist in the outer space
and other medium and, generally, those are charged particles moving in a
magnetic field under the action of electrostatic waves. The "oscillator-
wave" system features the same set of distinctive characteristics, such as the
possibility of excitation of stable oscillations with a strong determined set of
possible amplitudes, strong self-adaptive stability of stationary modes, etc.
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2. Theoretical analysis of the kicked pendulum.
In this section, we present an approximate but simple derivation of a

two-dimensional map corresponding to the poincard map of kickecl
pendulum

(3) i+2P*+ sinx = e(x)F sin(vr).

The fact that Poincar6's map is defined in energy-phase variables
suggests that we should examine the energy balance of the system. The
external force acts in such a way that the system receives energy only once
in a half-period in the form of a very short pulse; therefore, an expression
for the incoming energy can be easily obtained. In order to sirnplify our
calculations, we have to make two main assumptions concerning the system
parameters. we assume weak positive dissipation (0<P<<1) and thin
active zone, i.e. the phase trajectory crosses it for a 1iy1ys 

t ror" "T ,where T
is the osciliation half-period. The two map variables will correspond to the
total energy and the phase ofthe external force in the active zone's center (x
= 0).

The energy received for one pass through the active zone is:

LE,,, = iF sinlvr(x))
(4) :d

, Introducing phase variable W =vt and assuming / to be the average
velocity in the active zone, one can obtain
(s)

t//o\r D Fvvuun, 
^Fv . ts ^_.,sinfLE,, = j -sin Wdtl/ -:-L lsintydty = z- srnt//osrn f = zr.d. 

-snW.,,: v v I v t IU
Vi^ I/lin

Here, we have introduced median phase Vo=(VirlVo,,)/2 und phase

half-width of the active ton t=(Vout -V/i)I2=vd'/7 E prrrrion (5)

9an be further simplified by assuming smal phase half-width sin( = ( . in
this case, we get:

(6) LE,n =2Fd'sintYo 
.

tI4
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Now we have to determine the energy loss of (3) for the time interval
between two passes through the active zone, it will be approximately equal
to the energy loss in the case of free damped pendulum, which is given by

(j) LEo,, =I60lE(m) - (1- m)K(m)l 
.

Here, m=Eo/2 and Eo=*12+(t-cos'r) is the full energy of the

system, K(m) and E(m) are complete elliptic integrals of first and second
kind, accordingly. In case of small amplitudes , (7) can be simplified using
the expansions:

K(m) =?(t*L + 1*, * ...)2[ 4 64 I
E(m)=lft-Y -+*'+...\(s) 2( 4 64 )

and keeping only terms of order up to m, one obtains:

(9) LEou,=4PK(m)E" = fiT(m)E'

Here, T(m) is the period of pendulum oscillations expressed as a function
of its energy.

Let us now define the map variables precisely. The energy variable

is m= Eo 12, and the phase one is the median phase defined in (5): 0 =Vo 
.

In addition, we assume that ffin 
does not stand for the moment of the nth

pass through the center of the active zone, but for the moment of the
r <tth
\n - r) leaving the zone; these moments are shown in Fig.1. We used such
a complicated notation because it simplifies the equation for the phase

variable's evolution. It becomes simply:

0n+! = t, *t t lr = 0, + 2vK(mn*t) + n (mod 2n)

The additional term + n is introduced because of the symmetry of (3): it is

invariant under transformation (x, i,t{) -) ('x,-i,t// + /'). and the
subsequent passes through the active zone occur for velocities with opposite
signs (cf. Fig.1). The balance of m is written as:

ffin+t = m, + L!i! - ^+= 
ffin * Fd''sint^ - oy

Here, we can use either the exact expression for energy dissipation (7) or the
smali amplitudes' approximation (9). In the first case, combining the

(10)

(11)
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equations for enelgy and phase variables, we obtain the two-dimensional
map:

u't n+r = m, - 8 plE(m,,) - (l - m )K (m,)l + Fd' sin 0,

(I2) 9n+t = 0,, + 2vK(m,,+t) l lt (mod 2n)

In the case of small amplitudes approximation, expressing I r only with
terms of order up to m and assuming m and 0 ur"both small, the following
approximate map is obtained:

tt+r = ffi nQ - znb + Fd' sin 0,,

0,+1 = 0,, + (v +I)n +Y*,*, (mod 2n)(r3) 4

Let us find the fixed point. (*o ,0o y ofthe map (L2). Theequation
for m yields:

(t4) Fd'sin0" =801E(m")-(7-mo)K(m")1.

and from equation for 0 itfollows that:

(15) 2vK(n'to 1 = (21 -l)n 
.

The last result shows that for a fixed value of the frequency v the system

processes discrete set of stationary states *i fo, various values of l; the

condition K(m)>nl2 requires Ql-r)2u. Mor"over, Eq.(15) completely
determines the energy's stationary values, hence the amplitude of
oscillation. Taking into account only the first two terms in the expansion of
K(m) according to (8), one can_find approximately:

mi =412t -r -rl
(16) L v -1.

That is the reason for which we call (15) a discretization condition
for the system.

Writing the energy balance equation and combining it with the phase
equation we arrive at a map identical with the dissipative twist map:

En+1=Q-5)8"+EII(0,)

61) 0,,+r = 0n + 2na(En*) (mod 2n)

with the following notations introduced:

s=yFd'; a(E)=rf\U) *\
(18) 4n 2
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So, it becomes clear that dissipative twist map (17) models well the general
kick-system (1) with symmetric potential, small dissipation and thin active
zone.

This is a very important result. It places the class of kick-excited
systems in con'espondence to the well-studied class of dissipative twist
maps. It also highlights the fact that kick-systems inherit their common
features from twist maps. So, we can assert that it is convenient to consider
system (17) as a genelal kick-model, which stands for a variety of physical
systems and especially for those forced in a pulse way, i.e. the external force
acts only through short time pulses.

3. Conclusion
The basis properties characterizing the mechanism of "quantized"

oscillation excitation are:
(1) Excitation of oscillations of the quasi-eigenfrequency of the

system with a set of discrete stationary amplitudes, depending only on the
initial conditions, i.e. a specific "quantization" of the excited oscillation by
the parameter of intensity.

(2) The possibility for effective division of the frequency with high-
rate frequency of the unary transformation.

(3) Adaptive self-control of the energy contribution in the oscillating
process, revealed as maintenance of the amplitude values and the
oscillations frequency in the system in case of significant change of the
amplitude of external action, the quality factor (Q-factor, load, losses) and
other actions, i.e. this is a phenomenon of strong adaptive stabilization of
regimes when the parameter changes up to hundreds percent,
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EAIIH KJIAC AI4HAMI,ITIHU CVICTEMI4 C
HEJrr4HEfiHo Bb3tsyxnAHE +)

8.,[auzoe, II. Tpeuuee

Pegrovre

B crarugra e oIIIzcaHo v I43cJIeABaHo e tBJreHnero "KBaHToBaHa"
ocrlvnarlur. flpe4noxeH e cb3AaAeH KJrac or nrzr-nrs6yArauv
caMoaAanrnBHl4 ApIHaMr4qHr,I CIrCTeMr4, rOfiro ce xapaKTepl{3l{pa C

uenzuefino (nexouoreuno) BbHruHo nepr4oAr4rrHo nrs6yx4aHe (no
orHorxeHr4e Ha KoopAr,rHarr,rre ua nrs6yAraMl4Te cr4crevn) u ce orJrr4qaBa c
o6emueHl4Te cI4 3aKoHoMepHocrl{ : nrs6yxlaHe Ha "4I.IKp erHa" ocunnallrz.f,
B MaKpOAI{HaMkIqHV CI{CTeMr4 C MHO)r(eCTBO KJTOHOBT{ aTpaKTOpVt V CVrrrF.A

caMoaAarrrunHa ycrofi qr4Bocr.
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